796 research outputs found

    Quantum tunneling induced Kondo effect in single molecular magnets

    Full text link
    We consider transport through a single-molecule magnet strongly coupled to metallic electrodes. We demonstrate that for half-integer spin of the molecule electron- and spin-tunneling \emph{cooperate} to produce both quantum tunneling of the magnetic moment and a Kondo effect in the linear conductance. The Kondo temperature depends sensitively on the ratio of the transverse and easy-axis anisotropies in a non-monotonic way. The magnetic symmetry of the transverse anisotropy imposes a selection rule on the total spin for the occurrence of the Kondo effect which deviates from the usual even-odd alternation.Comment: 4 pages, 4 figure

    Ore deposits of hu-nan and hu-peh

    Get PDF
    n/

    Kondo-transport spectroscopy of single molecule magnets

    Full text link
    We demonstrate that in a single molecule magnet (SMM) strongly coupled to electrodes the Kondo effect involves all magnetic excitations. This Kondo effect is induced by the quantum tunneling of the magnetic moment (QTM). Importantly, the Kondo temperature TKT_K can be much larger than the magnetic splittings. We find a strong modulation of the Kondo effect as function of the transverse anisotropy parameter or a longitudinal magnetic field. For both integer and half-integer spin this can be used for an accurate transport spectroscopy of the magnetic states in low magnetic fields on the order of the easy-axis anisotropy parameter. We set up a relationship between the Kondo effects for successive integer and half-integer spins.Comment: 5 pages, 3 figure

    Fingerprints of the Magnetic Polaron in Nonequilibrium Electron Transport through a Quantum Wire Coupled to a Ferromagnetic Spin Chain

    Full text link
    We study nonequilibrium quantum transport through a mesoscopic wire coupled via local exchange to a ferromagnetic spin chain. Using the Keldysh formalism in the self-consistent Born approximation, we identify fingerprints of the magnetic polaron state formed by hybridization of electronic and magnon states. Because of its low decoherence rate, we find coherent transport signals. Both elastic and inelastic peaks of the differential conductance are discussed as a function of external magnetic fields, the polarization of the leads and the electronic level spacing of the wire.Comment: 5 pages, 4 figure

    Interference and interaction effects in multi-level quantum dots

    Full text link
    Using renormalization group techniques, we study spectral and transport properties of a spinless interacting quantum dot consisting of two levels coupled to metallic reservoirs. For strong Coulomb repulsion UU and an applied Aharonov-Bohm phase ϕ\phi, we find a large direct tunnel splitting Δ(Γ/π)cos(ϕ/2)ln(U/ωc)|\Delta|\sim (\Gamma/\pi)|\cos(\phi/2)|\ln(U/\omega_c) between the levels of the order of the level broadening Γ\Gamma. As a consequence we discover a many-body resonance in the spectral density that can be measured via the absorption power. Furthermore, for ϕ=π\phi=\pi, we show that the system can be tuned into an effective Anderson model with spin-dependent tunneling.Comment: 5 pages, 4 figures included, typos correcte

    Multiplicity of rapidly oscillating Ap stars

    Full text link
    Rapidly oscillating Ap (roAp) stars have rarely been found in binary or higher order multiple systems. This might have implications for their origin. We intend to study the multiplicity of this type of chemically peculiar stars, looking for visual companions in the range of angular separation between 0.05" and 8". We carried out a survey of 28 roAp stars using diffraction-limited near-infrared imaging with NAOS-CONICA at the VLT. Additionally, we observed three non-oscillating magnetic Ap stars. We detected a total of six companion candidates with low chance projection probabilities. Four of these are new detections, the other two are confirmations. An additional 39 companion candidates are very likely chance projections. We also found one binary system among the non-oscillating magnetic Ap stars. The detected companion candidates have apparent K magnitudes between 6.8 and 19.5 and angular separations ranging from 0.23" to 8.9", corresponding to linear projected separations of 30-2400AU. While our study confirms that roAp stars are indeed not very often members of binary or multiple systems, we have found four new companion candidates that are likely physical companions. A confirmation of their status will help understanding the origin of the roAp stars.Comment: 9 pages, 4 figures, 3 tables, accepted for publication in A&A. arXiv admin note: substantial text overlap with arXiv:1010.364

    Quantum Phase Transition in a Multi-Level Dot

    Full text link
    We discuss electronic transport through a lateral quantum dot close to the singlet-triplet degeneracy in the case of a single conduction channel per lead. By applying the Numerical Renormalization Group, we obtain rigorous results for the linear conductance and the density of states. A new quantum phase transition of the Kosterlitz-Thouless type is found, with an exponentially small energy scale TT^* close to the degeneracy point. Below TT^*, the conductance is strongly suppressed, corresponding to a universal dip in the density of states. This explains recent transport measurements.Comment: 4 pages, 5 eps figures, published versio

    Nonequilibrium functional RG with frequency dependent vertex function: A study of the single impurity Anderson model

    Full text link
    We investigate nonequilibrium properties of the single impurity Anderson model by means of the functional renormalization group (fRG) within Keldysh formalism. We present how the level broadening Gamma/2 can be used as flow parameter for the fRG. This choice preserves important aspects of the Fermi liquid behaviour that the model exhibits in case of particle-hole symmetry. An approximation scheme for the Keldysh fRG is developed which accounts for the frequency dependence of the two-particle vertex in a way similar but not equivalent to a recently published approximation to the equilibrium Matsubara fRG. Our method turns out to be a flexible tool for the study of weak to intermediate on-site interactions U <= 3 Gamma. In equilibrium we find excellent agreement with NRG results for the linear conductance at finite gate voltage, magnetic field, and temperature. In nonequilibrium, our results for the current agree well with TD-DMRG. For the nonlinear conductance as function of the bias voltage, we propose reliable results at finite magnetic field and finite temperature. Furthermore, we demonstrate the exponentially small scale of the Kondo temperature to appear in the second order derivative of the self-energy. We show that the approximation is, however, not able to reproduce the scaling of the effective mass at large interactions.Comment: [v2] - minor changes throughout the text; added new Fig. 3; corrected pert.-theory data in Figs. 10, 11; published versio
    corecore